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Exact solution of a one-dimensional continuum percolation model

Alon Drory
Dipartimento di Fisica, Universita` La Sapienza, Piazzale Aldo Moro 2, Roma 00187, Italy

~Received 20 September 1996!

I consider a one-dimensional system of particles that interact through a hard core of diameters and can
connect to each other if they are closer than a distanced. The mean cluster size increases as a function of the
densityr until it diverges at some critical density, the percolation threshold. This system can be mapped onto
an off-lattice generalization of the Potts model, which I have called the Potts fluid, and in this way, the mean
cluster size, pair connectedness, and percolation probability can be calculated exactly. The mean cluster size is
S52 exp@r(d2s)/(12rs)#21 and diverges only at the close-packing densityrCP51/s. This is confirmed by
the behavior of the percolation probability. These results should help in judging the effectiveness of approxi-
mations or simulation methods before they are applied to higher dimensions.@S1063-651X~97!05702-4#

PACS number~s!: 64.60.Ak
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I. INTRODUCTION

One-dimensional models have a long history in ph
transition studies, going back to Ising’s solution of the mo
that bears his name. Such models have been found to be
of phase transitions except in some singular circumstan
~such as zero temperature!, but nevertheless keep being stu
ied because they are sometimes exactly solvable. Becau
this, these models can serve as testing grounds, for exam
for approximations that are then used in other dimensions
this spirit, I present here the exact solution of a continu
percolation model in one dimension. Like related mode
this model exhibits a phase transition only in some singu
circumstances. However, it being exactly solvable may
make it interesting.

In percolation on a lattice, the one-dimensional mode
trivial. This is not the case for continuum percolation, whe
the objects connecting to each other may occupy arbit
positions@1#. The richness of continuum percolation lies
the variety of the binding criterion~which may include ef-
fects such as the shape and spatial distribution of the obje!
and the existence of interactions. The interplay between
connectivity criterion and the interactions makes the the
of continuum percolation a very challenging field. Therefo
even in one dimension, no completely general results ca
derived for continuum percolation. However, some spec
models can be solved. The main such model is the o
dimensional version of the extended spheres system
some time ago to model microemulsions@2#.

The system consists ofN11 particles on a closed ring o
length L. The particles interact with each other through
pure hard-core potentialv(xi ,xj )[v( i , j ), i.e., for two par-
ticles i and j

v~xi ,xj !5H `, uxi2xj u,s

0, uxi2xj u.s,
~1.1!

wheres is the hard-core diameter.
The connectivity criterion is supplied by the existence

a soft ~also called permeable! shell of diameterd around
each particle. Two particles are bound if their shells overl
Lettingp(xi ,xj )[p( i , j ) be the probability that two particle
at xi andxj are bound, we have
551063-651X/97/55~4!/3878~8!/$10.00
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p~xi ,xj !5H 1, uxi2xj u,d

0, uxi2xj u.d.
~1.2!

Naturally, d.s. The percolation transition now arises as
function of the densityr5(N11)/L. The mean cluster size
S diverges at a critical densityrc , which signals the sharp
~in the thermodynamic limit! appearance of an infinite clus
ter. The order parameter isP(r), the probability that a ran-
domly selected particle belongs to this infinite cluster.

The solution of this model relies on a general mappin
described recently, between continuum percolation an
Potts fluid@3#. The Potts fluid is a system of freely movin
spins $l i% i51

N with s states, which interact with each othe
through a spin-dependent potentialV(xi ,l i ;xj ,l j ), such
that

V~xi ,l i ;xj ,l j !5HU~xi ,xj ! if l i5l j

W~xi ,xj ! if l i5” l j .
~1.3!

HereU andW are arbitrary functions. Furthermore, the spi
couple to an external fieldh(x) through an interaction
Hamiltonian

H int52(
i51

N

c~l i !h~xi !, ~1.4!

where

c~l!5H s21 if l51

21 if l5” 1.
~1.5!

Every continuum percolation model defined by an interact
v( i , j ) and a binding criterionp( i , j ) can be mapped exactl
on a Potts fluid@3# by choosing

U~ i , j !5v~ i , j !,

exp@2bW~ i , j !#5q~ i , j !exp@2bv~ i , j !#, ~1.6!

where

q~ i , j ![12p~ i , j !. ~1.7!

For a constant field, the Potts configuration integral is
3878 © 1997 The American Physical Society
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55 3879EXACT SOLUTION OF A ONE-DIMENSIONAL . . .
Z5
1

N! ($lm%
E dx1•••dxNexpF2b(

i. j
V~ i , j !

1bh(
i51

N

c~l i !G , ~1.8!

where the sum($lm% is performed over all spin configura

tions andb51/kT as usual. The magnetization of the Po
fluid is defined as

M5
1

bN~s21!

] lnZ

]h
~1.9!

and the susceptibility is

x5
]M

]h
. ~1.10!

The Potts two-density function is defined as

r~2!~xW ,m;yW ,h!5K (
i51

N

(
j51
j5” i

N

d~xW i2xW !d~xW j2yW !dl i ,m
dl j ,hL .

~1.11!

According to the general mapping between continu
percolation and the Potts fluid, the percolation probabi
and the mean cluster size are obtained as the limits@3#

P~r!5 lim
h→0

lim
N→`

lim
s→1

M , ~1.12!

S~r!5 lim
h→0

lim
N→`

lim
s→1

1

b
x ~r,rc!. ~1.13!

Hence the strategy is to calculateM andx for the adequate
Potts fluid and to obtain from themP(r) andS by taking the
appropriate limits. Furthermore, the Potts two-density fu
tion is related to a fundamental quantity in percolation,
pair-connectedness functiong†, which is defined as

r2g†~xW ,yW !dxW dyW5P, ~1.14!

whereP is the probability of finding two particles in region
dxW anddyW around the positionsxW andyW , such that they both
belong to the same cluster.r is the numerical density. This
function is related to the mean cluster size through the r
tion ~for a translationally invariant system!

S511
1

NE dxW dyW r2g†~xW ,yW !. ~1.15!

The relation to the two-density function is given by

g†~xW ,yW !5 lim
s→1

1

r2
@r~2!~xW ,m;yW ,m!2r~2!~xW ,m;yW ,h!#

~r,rc!, ~1.16!

wherem,hÞ1 andmÞh, but are otherwise arbitrary.
y

-
e

a-

For the percolation model defined by Eqs.~1.1! and~1.2!,
the proper Potts fluid is determined by Eq.~1.6! to be

exp@2bU~xi ,xj !#[Q~ i , j !5H 0, uxi2xj u,s

1, uxi2xj u.s,

exp@2bW~xi ,xj !#[R~ i , j !5H 0, uxi2xj u,d

1, uxi2xj u.d.
~1.17!

What makes this model solvable is that these functions
take only the values 0 and 1~this condition may be relaxed
if the values ofd are restricted tod,2s). Mathematically,
this system presents several similarities with the Takaha
gas@4#, and several parts of the following derivation follo
the calculations of Takahashi and of Salsburget al. @5#.

II. SOLUTION OF THE MODEL

We assume that the spins are ordered on a closed rin
lengthL, so that the position 0 and the positionL are iden-
tified. Along this ring, we placeN11 spins, numbered from
0 toN, so that one of the spins is fixed at the position 0. T
property that makes such one-dimensional models solvab
the existence of a canonical ordering of the particles. Fo
configuration$x0 ,x1 , . . . ,xN%, the canonical ordering con
sists in labeling the leftmost particle~fixed at the position
0) as 0, the one immediately to its right as 1, and so on, u
the rightmost particle, labeledN. Thus

05x0,x1,x2,•••,xN,L[xN11 . ~2.1!

The definitionxN11[L serves to simplify the notation late
on. There are exactly (N11)! configurations that differ from
the canonically ordered one only by the labels attached to
particles, provided we distinguish clockwise numbering fro
counterclockwise, i.e., provided the ring is oriented. Since
the position variables are integrated upon, each of these
figurations contributes the same toZ, which is therefore
(N11)! times the contribution of the canonically ordere
configuration. Hence

Z5E
0

L

dxNE
0

xN
dxN21•••E

0

x2
dx1(

$lm%
expF2b(

i. j
V~ i , j !

1bh(
i50

N

c~l i !G . ~2.2!

This property is completely general and is independent of
specific form ofV( i , j ). Let us denote

f l i ,l j
~ uxi2xj u![exp@2bV~xi ,xj !#5HQ~ i , j !, l i5l j

R~ i , j !, l i5” l j .

~2.3!

Now, taking into account thatx05xN11 because of the pe
riodic boundary conditions, the configuration integral can
written as
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Z5E
0

L

dxNE
0

xN
dxN21•••E

0

x2
dx1

3 (
$lm%

)
i. j

N

f l i ,l j
~ uxi2xj u!expFbh(

i50

N

c~l i !G .
~2.4!

The specifics of the model, Eq.~1.17!, now enter to verify
the following theorem.

Theorem (factorization). For any spin configuration
$lm%,

)
i. j50

N

f l i ,l j
~ uxi2xj u!5 )

i50

N21

f l i11 ,l i
~xi112xi !. ~2.5!

Although simple, this theorem is not entirely trivial be
cause of the presence of two scaless andd, the interplay of
which depends on the spin configuration$lm%. The theorem
is proved in the Appendix. Using this result, Eq.~2.4! can
now be rewritten as

Z5E
0

L

dxNE
0

xN
dxN21•••E

0

x2
dx1(

$lm%
H f l0 ,lN

~L2xN!

3)
i51

N

f l i11 ,l i
~xi112xi ! f l1 ,l0

~x1!

3expFbh(
i51

N

c~l i !G J . ~2.6!

Let us define

Gl i ,l j
~y![ f l i ,l j

~y!expH bh

2
@c~l i !1c~l j !#J . ~2.7!

Then

Z5E
0

L

dxN•••E
0

x2
dx1(

$lm%
$Gl0 ,lN

~L2xN!

3GlN ,lN21
~xN2xN21!•••Gl2 ,l1

~x22x1!Gl1 ,l0
~x1!%.

~2.8!

This multiple integral has the form of a Laplace convolutio
Denoting

Tl i ,l j
~v![E

0

`

dy e2vyGl i ,l j
~y!, ~2.9!

we have

E
0

`

dL e2vLZ~L !

5 (
$l0 ,l1 , . . . ,lN%

Tl0 ,lN
~v!

3TlN ,lN21
~v!•••Tl2 ,l1

~v!Tl1 ,l0
~v!

5Tr~TN11!. ~2.10!

The matrix Tl i ,l j
(v) now plays the role of an effective

transfer matrix for this problem. It is ans3s matrix of the
form
.

T5S A B B ••• B

B C D ••• D

B D C ••• D

A A A � A

B D D ••• C

D , ~2.11!

where

A5E
0

`

dy e2vyQ~y!eb~s21!h5
1

v
exp@2vs1b~s21!h#,

B5E
0

`

dy e2vyR~y!e~1/2!b~s22!h

5
1

v
expF2vd1

1

2
b~s22!hG ,

C5E
0

`

dy e2vyQ~y!e2bh5
1

v
exp@2vs2bh#,

D5E
0

`

dy e2vyR~y!e2bh5
1

v
exp@2vd2bh#. ~2.12!

Let $a i% i51
s be the eigenvalues ofT. Then

E
0

`

dL e2vLZ~L !5(
i51

s

a i
N11 . ~2.13!

The eigenvalues are found easily to be

a15
1

2
@A1C1~s22!D1AD#,

a25
1

2
@A1C1~s22!D2AD#,

a35•••5as5C2D, ~2.14!

where

D5@A2C2~s22!D#214~s21!B2. ~2.15!

Reversing the Laplace transform in Eq.~2.13! yields

Z5(
j51

s
1

2p i Ea2 i`

a1 i`

dv exp@vL1~N11!lna j~v!#. ~2.16!

In the thermodynamic limit, the integral can be evaluat
exactlyby steepest descent. Let us introduce the notation

g j~v![v
L

N11
1 lna j~v!. ~2.17!

Then the maximum of the exponents in Eq.~2.16! is ob-
tained from the condition

dg j

dv U
v5v j

50, ~2.18!
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which defines the quantityv j at which g j (v) is maximal.
From the usual theory of steepest descent@6#, we now obtain
from Eq. ~2.16! that

Z5(
j51

s

K jexp@~N11!g j~v j !#, ~2.19!

where

Kj5
1

@2p~N11!g j9~v j !#
1/2, g j9~v!5

d2g j~v!

dv2 .

~2.20!

The sum in Eq.~2.19! is dominated byg1. To see this,
note first that sinceD.0, we havea1.a2. Furthermore,

a12a35
1

2
@A2C1sD1AD#. ~2.21!

SinceA5Cesbh and h.0, we have thatA2C.0. There-
fore, a12a3.0. Hence, for any givenv, a1(v).a j (v)
for j52, . . . ,s. Since g1(v)2g j (v)5 ln(a1 /aj), we also
have that for any givenv, g1(v).g j (v) for j52, . . . ,s.
Now, atv1, g1 is maximal, so that

g1~v1!>g1~v j !.g j~v j ! ~2.22!

for j52, . . . ,s. Hence, forN→`,

Z5K1e
Ng1H 11(

j52

s
K j

K1
exp@Ng1~v1!2Ng j~v j !#J

;K1e
Ng1. ~2.23!

Hence

lim
N→`

1

N
lnZ5g1 . ~2.24!

From Eq.~2.24!, we can obtain the magnetizationM ,

M5
1

b~s21!N

d lnZ

dh

5
1

b~s21!N F S ]g1

]h D
v1

1S ]g1

]v1D
h

S ]v1

]h D G
5

1

b~s21! S ]g1

]h D
v1

, ~2.25!

where we made use of the fact that 05(]g1 /]v1)h by defi-
nition of v1.

Although Eq.~2.24! is in principle the exact solution o
the one-dimensional Potts fluid, it is not explicit enough
be useful. However, we are not interested in the Potts fl
itself, but rather in the percolation model. This is obtained
the limits s→1 andh→0, and in these limits all quantitie
can be calculated explicitly.

To do this, we sets511e and calculate all relevan
quantities to first order only ine ~this turns out to be suffi-
cient!. Therefore, from Eqs.~2.12! and ~2.17!, we find after
some algebra that
id

g15v
L

N
1 lnA1eFbh1

B2

A~A2C1D !G1O~e2!, ~2.26!

where A,B,C,D must be evaluated to zeroth order ine.
From Eq.~2.12!, the result for this is

A5
1

v
exp@2vs#, B5

1

v
expF2vd2

1

2
bhG ,

C5
1

v
exp@2vs2bh#, D5

1

v
exp@2vd2bh#.

~2.27!

Now

M5 lim
e→0

1

be S ]g1

]h D
v1

511
1

b

]

]h F B2

A~A2C1D !G
v1 ,e50

.

~2.28!

After some algebra, and with the use of Eq.~2.27!, we end
up with

M512F B

A2C1D G
v1 ,e50

2

. ~2.29!

After some more algebra, the susceptibility is obtain
straightforwardly,

x5
]M

]h
5bFB2~A1C2D !

~A2C1D !2 G
v1 ,e50

. ~2.30!

In both Eqs.~2.29! and~2.30!, v1 is evaluated ate50. From
Eqs.~2.26! and ~2.27!, we have that fore50,

g15
v

r
2vs2 lnv, ~2.31!

where r5(N11)/L is the density. Hence, from
(dg1 /dv)v5v1

50, we obtain

v1ue505
r

12rs
. ~2.32!

The final result is obtained from Eqs.~2.29! and~2.30! by
setting e50, plugging in the value ofv1, and taking the
limit h→0. We have

M→P~r!512 lim
h→0

H 12~ebh21!expFr~d2s!

12rs G J 22

,

~2.33!

x

b
→S~r!52 expFr~d2s!

12rs G21. ~2.34!

If we just seth50 in the equation forP(r), we obtain
P(r)50, which shows that there is no transition. There
however, one exception, obtained atr51/s5rCP. This is
the close-packing density in one dimension, and clearly
must have a percolating cluster in this case. Indeed, at
density
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lim
r→rCP

5expFr~d2s!

12rs G5`, ~2.35!

and therefore

H 12~ebh21!expFr~d2s!

12rs G J 22U
r5rCP

50 ~2.36!

for all values ofh; henceP(rCP)51, as expected. Note tha
for s50 ~no hard core!, rCP→`. Equation~2.33! becomes,
in this case,

P~r!512 lim
h→0

@12~ebh21!erd#22, ~2.37!

and indeedP(r5`)51. The transition is clearer in the ex
pression Eq.~2.34! for the mean cluster size

lim
r→rCP

S~r!5 lim
r→rCP

2 expFr~d2s!

12rs G215`, ~2.38!

so that indeed the mean cluster size diverges as the de
approaches the close-packing value.

III. THE PAIR-CONNECTEDNESS FUNCTION

Let us now consider the pair connectedness. To this
we need to calculate the spin two-density function

r~2!~x,m;y,h!5K (
i51

N

(
j51
j5” i

N

d~xi2x!d~xj2y!dl i ,m
dl j ,hL .

~3.1!

To simplify the algebra let us use the system’s translatio
invariance@one can work with Eq.~3.1! and obtain transla-
tional invariance directly, but this adds needlessly to the c
culations#. We assume thaty,x, denotex2y5r , and set
y50 andl05m. We now have, therefore, that

r~2!~0,m;r ,h![r~2!~r ;m,h!

5rK (
k51

N

d~xk2r !dl0 ,m
dlk ,hL , ~3.2!

wherer5(N11)/L. From Eq.~2.8!, we have that

r~2!~r ;m,h!

5
r

Z (
k51

N E
0

L

dxN•••E
0

x2
dx1

3 (
$lm%

$dl0 ,m
Gl0 ,lN

~L2xN!

3GlN ,lN21
~xN2xN21!•••Glk11 ,lk

~xk112xk!

3dlk ,h
d~xk2r !Glk ,lk21

~xk2xk21!•••Gl1 ,l0
~x1!%,

~3.3!

where the functionGl i ,l j
(x) is defined in Eq.~2.7!. This is

again a Laplace convolution and we have
ity

d

al

l-

E
0

`

dL e2vL
Z

r
r~2!~r ;m,h!

5 (
k51

N

(
$l0 ,l1 , . . . ,lN%

dl0 ,m
Tl0 ,lN

~v!•••Tlk11 ,lk
~v!

3dlk ,h
e2vrhk~r ;lk ,l0!, ~3.4!

wherehk(r ;lk ,l0) is defined by its Laplace transform as

E
0

`

dr e2nrhk~r ;lk ,l0!

5 (
$lk21 , . . . ,l1%

Tlk ,lk21
~n!•••Tl1 ,l0

~n!

5~Tk!lk ,l0
. ~3.5!

The sum over the spins yields

E
0

`

dL e2vL
Z

r
r~2!~r ;m,h!5 (

k51

N

@TN2k11~v!#m,h

3e2vrhk~r ;h,m!. ~3.6!

Inverting the Laplace transform in Eqs.~3.5! and ~3.6!, we
obtain finally

Z

r
r~2!~r ;m,h!5

1

2p i Ea2 i`

a1 i`

dv
1

2p i Ea2 i`

a1 i`

dn

3 (
k51

N

@TN2k11~v!#m,h@Tk~n!#h,m

3ev~L2r !enr . ~3.7!

Let us introduce now a basis of eigenvectors of the ma
T(z), which will be denoted$^u1u,^u2u, . . . ,̂ usu%, ^uj u be-
ing associated with the eigenvaluea j defined in Eq.~2.14!.
These can be calculated straightforwardly. Furthermore,
resulting expressions can be simplified by setting the m
netic fieldh50, since it plays no part in the calculation o
the pair connectedness. With this, we have thatA5C and
B5D. From Eqs.~2.12! and ~2.14!, we now have that

a15A1~s21!B, a25A2B,

A~z!5
1

z
exp~2zs!, B~z!5

1

z
exp~2zd!. ~3.8!

The eigenvectors are now found to be

^u1u5
1

As
~1,1,1, . . . ,1!, ~3.9!

^u2u5
1

As~s21!
~s21,21,21, . . . ,21!,

^u3u5
1

A2
~0,1,21,0, . . . ,0!,

A

^usu5
1

A~s21!~s22!
„0,1,1, . . . ,2~s22!….
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Finally, we define two vectors of the typ
(0,0, . . . ,1,0,. . . ,0), denoted̂ mu and ^hu such that their
single nonzero component 1 stands at the positionm and
h, respectively. With this, we have that

@TN2k11~v!#m,h5 (
m51

s

^muum&am
N2k11~v!^umuh&,

@Tk~n!#h,m5 (
n51

s

^huun&an
k~n!^unum&. ~3.10!

Hence

1

2p i Ea2 i`

a1 i`

dv@TN2k11~v!#m,he
v~L2r !

5
1

2p i Ea2 i`

a1 i`

dv evL (
m51

s

am
N11~v!Fm,k~v,r !

5 (
m51

s
1

2p i Ea2 i`

a1 i`

dv e~N11!gm~v!Fm,k~v,r !,

~3.11!

where

Fm,k~v,r !5
^muum&^umuh&

@am~v!#k
e2vr , ~3.12!

and gm(v)5vL/(N11)1 lnam(v) as in Eq.~2.17!. In the
limit N,L→` the integral can be evaluated exactly by ste
est descent. The calculation is identical to the one perform
in Eqs. ~2.16!–~2.19!. As in Eq. ~2.24!, the termg1 domi-
nates all the others, so that in the limitN→`, the result is
exactly

lim
N→`

1

2p i Ea2 i`

a1 i`

dv@TN2k11~v!#m,he
v~L2r !

5 lim
N→`

K1exp@~N11!g1~v1!#F1,k~v1 ,r !. ~3.13!

From Eq. ~2.24!, we have that, in the same limi
Z5K1exp@(N11)g1(v1)#. Therefore, combining Eqs.~3.7!,
~3.10!, and~3.13!, we finally obtain the expression

r~2!~r ;m,h!5 lim
N→`

r(
k51

N

F1,k~v1 ,r !
1

2p i

3E
a2 i`

a1 i`

dn@Tk~n!#h,me
nr

5r(
k51

`
^muu1&^u1uh&

2p i E
a2 i`

a1 i`

dn (
n51

s

^huun&

3^unum&F an~n!

a1~v1!
Gke~n2v1!r . ~3.14!

In order to calculate the pair connectedness, we need
casem,hÞ1 @see Eq.~1.16!#. For this case, we see direct
from the definition of thê ui u, Eq. ~3.9!, that for anyl>2,

^u1ul&5
1

As
, ^u2ul&5

21

As~s21!
, ~3.15!
-
d

he

and for anyn>3,

^unul&55
0 if n,l

2~n22!

A~n22!~n21!
if n5l

1

A~n22!~n21!
if n.l.

~3.16!

We are interested, however, in the pair connectedness, w
involves the differencer (2)(r ;m,m)2r (2)(r ;m,h). Substi-
tuting Eq.~3.15! into Eq. ~3.14!, we obtain therefore

r~2!~r ;m,m!2r~2!~r ;m,h!

5
r

s(k51

`
1

2p i Ea2 i`

a1 i`

dn (
n51

s

@^muun&2^huun&#^unum&

3F an~n!

a1~v1!
Gke~n2v1!r . ~3.17!

From Eq.~3.15!, we see that̂muun&2^huun& vanishes iden-
tically for n51,2. Now, forn>3, we have that

an~n!5
1

n
@e2ns2e2nd# ~3.18!

and is independent of the value ofn. Finally, from Eq.
~3.16!, it is easily seen that for anym,hÞ1, mÞh, we have
that

(
n53

s

^unum&@^muun&2^huun&#51. ~3.19!

Therefore, we have that

r~2!~r ;m,m!2r~2!~r ;m,h!

5
r

s(k51

`
1

2p i Ea2 i`

a1 i`

dnF an~n!

a1~v1!
Gke~n2v1!r . ~3.20!

Finally, to obtaing†(r ), we take the limits→1. In this limit,
Eq. ~3.8! yields

a1~v1!5
1

v1
exp@2v1s#, ~3.21!

where, from Eq.~2.32!,

v15
r

12rs
. ~3.22!

Hence, substituting the values ofan anda1, we finally ob-
tain, by substituting Eq.~3.20! into Eq. ~1.16!, that

g†~r !5 lim
s→1

1

r2
@r~2!~r ;m,m!2r~2!~r ;m,h!#

5
1

r (
k51

`
1

2p i Ea2 i`

a1 i`

dn
v1
k

nk
@12e2n~d2s!#ke~n2v1!r

~3.23!

or



h

a
l

on

a-

e

on

th
is

ed

nal
ns
r
are
n-
tts
ect-
ith
curs
hen

ster

is

t of
la-
sults
ve-
one-
ons

are
e-
tly,
ate
c-

ect
p-
ude
od

in-
s-

3884 55ALON DRORY
g†~r !5
1

r (
k51

`

(
j50

k

~21! j S kj Dv1
ke2v1~r2ks!

1

2p i

3E
a2 i`

a1 i`

dn
1

nk
en[ r2ks2 j ~d2s!] . ~3.24!

This integral is an immediate inverse Laplace transform. T
final result is therefore

g†~r !5
1

r (
k51

`

(
j50

k

~21! j S kj D
3S r

12rs D k @r2ks2 j ~d2s!#k21

~k21!!

3Q@r2ks1 j ~d2s!#expF2
r~r2ks!

12rs G ,
~3.25!

whereQ(z) is the step function

Q~z!5H 1, z.0

0, z,0.
~3.26!

We can understand the meaning ofk and j as follows. Given
a distancer.0 from the~arbitrary! origin, g†(r ) is a sum of
contributions from sets of configurations indexed byk. The
derivation shows that in each such configuration there
exactlyk particles within the intervalr . Since the potentia
includes a hard core of diameters, we expect a condition on
k such thatr.ks. This is indeed contained in the expressi
Q@r2ks1 j (d2s)#, since it implies that r.ks
1 j (d2s).ks. Next, we note that each set of configur
tions containingk particles in the intervalr is further divided
into subsets indexed byj . The meaning ofj is made clear
from the conditionr.ks1 j (d2s)5 jd1(k2 j )s gener-
ated by the step function. This implies thatj particles out of
thek are singlets, i.e., arenot connected to any other particl
in the set. Therefore, the step function shows thatg†(r ) is a
sum of separate contributions from all sets of configurati
containingk particles in the intervalr ,j of which are not
connected to any other particle in the set.

Finally, we can check the expected relation between
mean cluster sizeS and the pair connectedness. This
worked out most conveniently from Eq.~3.23!. From this,
we have that

E
0

`

dr g†~r !5
1

r (
k51

` H v1
k

nk
@12e2n~d2s!e~n2v1!r #kJ

n5v1

5
1

r
expFr~d2s!

12rs G21. ~3.27!

From Eq.~1.15!, and remembering that we have calculat
g†(x,y) under the assumption thaty,x, we now have that

S511
1

NE dx dyr2g†~x,y!5112rE
0

`

dr g†~r !

~3.28!

and therefore
e

re

s

e

S52 expFr~d2s!

12rs G21, ~3.29!

in agreement with the previously obtained result, Eq.~2.34!.

IV. SUMMARY

I have obtained the exact solution of a one-dimensio
percolation model that includes the effects of interactio
among the particles, modeled by a hard core of diametes.
The particles are connected to each other if their centers
closer than a distanced. The clustering depends on the de
sity r of the particles. By mapping this system on a Po
fluid, one can calculate the mean cluster size, pair conn
edness, and percolation probability of this system. As w
other one-dimensional systems, the phase transition oc
only in some extreme circumstance, in this case, only w
the density reaches the close-packing valuerCP51/s. As the
density increases towards this critical value, the mean clu
size increases as

S52 expFr~d2s!

12rs G21 ~4.1!

and diverges atrCP. Meanwhile, the pair connectedness
given by

g†~r !5
1

r (
k51

`

(
j50

k

~21! j S kj D
3S r

12rs D k @r2ks2 j ~d2s!#k21

~k21!!

3Q@r2ks1 j ~d2s!#expF2
r~r2ks!

12rs G .
~4.2!

These results should be particularly useful as a tes
approximation methods or numerical calculations or simu
tions. Such methods can be checked against the exact re
and some idea thus obtained of their reliability and effecti
ness. Once a method has proved to be successful in the
dimensional case, it can be applied to higher dimensi
with some hope of success.

From a more general point of view, the present results
a confirmation of the power provided by the mapping b
tween continuum percolation and the Potts fluid. Recen
Cinlar and Torquato have used renewal theory to investig
one-dimensional continuum percolation, but without intera
tions ~i.e., thes→0 limit of the present model! @7#. There
seems to be no simple way of extending this type of dir
probability arguments to cover interactions as well. It a
pears that in order to discuss general models, which incl
inter-particle interactions, there is at the moment no meth
more powerful than the mapping with the Potts fluid.

APPENDIX

The proof of the factorization theorem is obtained by
duction onN. For N51 the theorem is obvious. Let us a
sume it is correct forN and prove it forN11. Then
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)
i. j50

N11

f l i ,l j
~ uxi2xj u!

5 )
i. j50

N

f l i ,l j
~ uxi2xj u!)

i50

N

f lN11 ,l i
~xN112xi !

5 )
i50

N21

f l i11 ,l i
~xi112xi !)

i50

N

f lN11 ,l i
~xN112xi !

5 )
i50

N21

@ f l i11 ,l i
~xi112xi ! f lN11 ,l i

~xN112xi !#

3 f lN11 ,lN
~xN112xN!, ~A1!

where we used the induction assumption to obtain the sec
equality.

Let us now consider the various possibilities for eve
term i .

~i! f lN11 ,l i
(xN112xi)51. In this case clearly,

f l i11 ,l i
~xi112xi ! f lN11 ,l i

~xN112xi !5 f l i11 ,l i
~xi112xi !.

~A2!

~ii ! f lN11 ,l i
(xN112xi)50 and lN115l i . Then, from

Eq. ~2.3!,

f lN11 ,l i
~xN112xi !5Q~xN112xi !50, ~A3!

so that, necessarily@see Eq.~1.1!#, xN112xi,s. However,
in the canonical ordering,xi,xi11,•••,xN , so that

xN112xN,xN112xi,s,d. ~A4!

Hence

f lN11 ,lN
~xN112xN!50, ~A5!

even iflN11ÞlN , becauses,d. Therefore,

05 f l i11 ,l i
~xi112xi ! f lN11 ,l i

~xN112xi !

3 f lN11 ,lN
~xN112xN!

5 f l i11 ,l i
~xi112xi ! f lN11 ,lN

~xN112xN!. ~A6!
I.
nd

~iii ! f lN11 ,l i
(xN112xi)50 andlN11Þl i . Then@see Eq.

~2.3!#,

f lN11 ,l i
~xN112xi !5R~xN112xi !50 ~A7!

and, necessarily@see Eq.~1.1!#, xN112xi,d. Then there
must exist somej , i< j,N11, such that

lN115lk , lN115” l j for all j,k,N11, ~A8!

i.e., j is the closest spin tolN11, which differs from it. In
particular,lN115l j11, so that

f l j11 ,l j
~xj112xj !5R~xj112xj !. ~A9!

Because of the canonical ordering,

xj112xj<xj112xi,xN112xi,d. ~A10!

Hence

R~xj112xj !50. ~A11!

Therefore,

05 f l i11 ,l i
~xi112xi ! f lN11 ,l i

~xN112xi ! f l j11 ,l j
~xj112xj !

5 f l i11 ,l i
~xi112xi ! f l j11 ,l j

~xj112xj !. ~A12!

From Eqs. ~A2!–~A12!, it follows that
f lN11 ,l i

(xN112xi) makes no difference anywhere in th

product ) i51
N21f l i11 ,l i

(xi112xi) f lN11 ,l i
(xN112xi). It can

therefore be dropped out of every termi . Hence

)
i51

N21

@ f l i11 ,l i
~xi112xi ! f lN11 ,l i

~xN112xi !#

3 f lN11 ,lN
~xN112xN!

5 )
i51

N21

@ f l i11 ,l i
~xi112xi !# f lN11 ,lN

~xN112xN!

5)
i51

N

f l i11 ,l i
~xi112xi !. ~A13!

Referring back to Eq.~A1!, we see that this proves the the
rem.
m.
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