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Exact solution of a one-dimensional continuum percolation model
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| consider a one-dimensional system of particles that interact through a hard core of diansgtércan
connect to each other if they are closer than a distandée mean cluster size increases as a function of the
densityp until it diverges at some critical density, the percolation threshold. This system can be mapped onto
an off-lattice generalization of the Potts model, which | have called the Potts fluid, and in this way, the mean
cluster size, pair connectedness, and percolation probability can be calculated exactly. The mean cluster size is
S=2 exgp(d—o)/(1-po)]—1 and diverges only at the close-packing denpigy=1/0. This is confirmed by
the behavior of the percolation probability. These results should help in judging the effectiveness of approxi-
mations or simulation methods before they are applied to higher dimeng&1363-651X97)05702-4

PACS numbdps): 64.60.Ak

. INTRODUCTION 1, [x—xj|<d

p(X; ,X;) = (1.2

One-dimensional models have a long history in phase 0, |Xi_Xj|>d'

transition stL_Jdies, going back to Ising’s solution of the mOdelNaturaIIy, d>o. The percolation transition now arises as a
that bears his name. Such models have been found to be fr§gction of the density=(N+1)/L. The mean cluster size
of phase transitions except in some singular C|rcymstance§ diverges at a critical density., which signals the sharp
(such as zero temperatiybut nevertheless keep being stud- (i the thermodynamic limjtappearance of an infinite clus-
ied because they are sometimes exactly solvable. Because @f The order parameter B(p), the probability that a ran-
this, these_ models can serve as testing groundS_, for QxamD@omw selected particle belongs to this infinite cluster.

for approximations that are then used in other dimensions. In e selution of this model relies on a general mapping |

this spirit, | present here the exact solution of a continuuNyegcribed recently, between continuum percolation and a

percolation model in one dimension. Like related modelspqs fiuid[3]. The Potts fluid is a system of freely moving
this model exhibits a phase transition only in some smgulagpim{)\i}iN:1 with s states, which interact with each other

circumstances. However, it being exactly solvable may ye{hrough a spin-dependent potentl(x; .\, :X; .A;), such
make it interesting. that (R R P

In percolation on a lattice, the one-dimensional model is
trivial. This is not the case for continuum percolation, where U(x,x) if A=)\
the objects connecting to each other may occupy arbitrary V(X i3 Xj M) = W TN
positions[1]. The richness of continuum percolation lies in (X %)) ENF N
the variety of the binding criteriofwhich may include ef- o101y andw are arbitrary functions. Furthermore, the spins

fects such as the shape and spatial distribution of the ob)jectﬁouph3 to an external fielch(x) through an interaction
and the existence of interactions. The interplay between thﬁamiltonian

connectivity criterion and the interactions makes the theory

of continuum percolation a very challenging field. Therefore, N

even in one dimension, no completely general results can be Hip=— Z (N h(Xp), (1.4

derived for continuum percolation. However, some specific =1

models can be solved. The main such model is the ON&: here

dimensional version of the extended spheres system usedh

some time ago to model microemulsior®s. s—1 if A=1
The system consists &f+ 1 particles on a closed ring of P(N)= .

length L. The particles interact with each other through a -1 i AFL

pure hard-core potential(x; ,x;)=uv(i,]), i.e., for two par-

1.3

1.9

Every continuum percolation model defined by an interaction

ticlesi and] v(i,j) and a binding criteriom(i,j) can be mapped exactly
on a Potts fluid 3] by choosing
», |xi—xj|<o
PNX)= 0, kx>0, (1.9 U(i.j)=v(i.j),
whereg is the hard-core diameter. exf —AW(,j)]=q(i.j)exd — pu(i.p], (1.6
The connectivity criterion is supplied by the existence ofWhere
a soft (also called permeableshell of diameterd around
each particle. Two particles are bound if their shells overlap. q(i,j)=1-p(,j). (1.7
Letting p(x; ,x;)=p(i,]) be the probability that two particles
atx; andx; are bound, we have For a constant field, the Potts configuration integral is
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1 For the percolation model defined by E¢t.1) and(1.2),
zZ= WZ J’ dx, - - -deex;{ -8B V(i,j) the proper Potts fluid is determined by Ed.6) to be
'{)\m} i>]

0, Ixi—xj|<o

, 1.9 eXF{_ﬁU(Xi,Xj)]EQ(i,j)Z[

N
+ﬂh§l P\

1, |xi—xj|>o,

where the suny, 4 is performed over all spin configura- o 0, |xi—xj|<d
tions andB=1/kT as usual. The magnetization of the Potts ex — BW(xi X)) 1=R(I. 1) = 1, [x—xj|>d.
fluid is defined as (1.17
M = 1 al_nZ (1.9 What makes this model solvable is that these functions can
BN(s—1) oh ' take only the values 0 and (this condition may be relaxed
o if the values ofd are restricted t@l<2¢). Mathematically,
and the susceptibility is this system presents several similarities with the Takahashi
gas[4], and several parts of the following derivation follow
X= %_ (1.10 the calculations of Takahashi and of Salsbatal. [5].

The Potts two-density function is defined as Il. SOLUTION OF THE MODEL

lengthL, so that the position O and the positibnare iden-
tified. Along this ring, we plac&l + 1 spins, numbered from

0 toN, so that one of the spins is fixed at the position 0. The
(1.1 property that makes such one-dimensional models solvable is

According to the general mapping between continuunthe existence of a canonical ordering of the particles. For a

N N We assume that the spins are ordered on a closed ring of
PP (X1, m)= < 2, 2 OKi=X)85=Y) oy, ,n> :
j#i

percolation and the Potts fluid, the percolation probabilityconfiguration{xg,x;, ... Xy}, the canonical ordering con-
and the mean cluster size are obtained as the lifgits sists in labeling the leftmost particldixed at the position
0) as 0, the one immediately to its right as 1, and so on, until
P(p)=Ilim lim lim M, (1.12 the rightmost patrticle, labeled. Thus
h—0 N—w» s—1
O:X0<X1<X2<'-'<XN<LEXN+1. (21)
1
=lim Ilim lim — <pe). 1.1
Sp) h—0 N—w s—1 ﬂX (p=<pc) (.13 The definitionxy ;=L serves to simplify the notation later

on. There are exactlyN+ 1)! configurations that differ from
Hence the strategy is to calculaw and y for the adequate the canonically ordered one only by the labels attached to the
Potts fluid and to obtain from thef(p) andS by taking the  particles, provided we distinguish clockwise numbering from
appropriate limits. Furthermore, the Potts two-density func-counterclockwise, i.e., provided the ring is oriented. Since all
tion is related to a fundamental quantity in percolation, thethe position variables are integrated upon, each of these con-

pair-connectedness functigi, which is defined as figurations contributes the same # which is therefore
(N+1)! times the contribution of the canonically ordered
ngT(i,)?)d;(df/z P, (1.14 configuration. Hence

whereP is the probability of finding two particles in regions L XN Xo o
dx anddy around the positiong andy, such that they both ~ £= jo dXNfO dXy-1- - fo dxl{)\Z} ex —,3; V(i j)
belong to the same clustes.is the numerical density. This m .

function is related to the mean cluster size through the rela- N
tion (for a translationally invariant system + ,tho P(N) |- (2.2
<
1 A 2atie o . : .
S=1+ | dxdypg'(xy). (1.19  This property is completely general and is independent of the
specific form ofV(i,j). Let us denote
The relation to the two-density function is given by o
fy, (1= =exgT — VO )] |Q("”’ .
- > . 1 - > > > )\i A i j = - i1 = .o . )
g'(x.y)=lim —[p@(X, 1y, 1) = p@ (X, 1y, m)] ‘ ROLD - N#A
s»1 P 2.3

(p<pe), (1.16 Now, taking into account that,=xy, 1 because of the pe-
riodic boundary conditions, the configuration integral can be
whereu,n# 1 andu# 7, but are otherwise arbitrary. written as
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- X2 A B B - B
Z: dXN XN,l"' Xm
O .
N

o3}
(@)
W)
w)

N
T=| B D C D |, (2.11)
; ﬂ ,.<|xi—xj|>exr{ﬂhi20 yN) |- C L
(2.9 B DD --- C
The specifics of the model, EqL.17, now enter to verify \here
the following theorem.
Theorem (factorization) For any spin configuration o B Ss=Dh 1
{Amt, A=, dye “YQ(y)e =—exf~wo+p(s=1h],
N N—-1
i>]H: Aj *(|X' X|)_H f’\.u M(X'H xi). (2.9 B=fxdyefwyR(y)e(llz)ﬁ(sfah
0

Although simple, this theorem is not entirely trivial be- 1 1
cause of the presence of two scaleandd, the interplay of =—exp{ —wd+ = B(s—2)h
which depends on the spin configuratipy,,}. The theorem w 2
is proved in the Appendix. Using this result, E&.4) can

. o 1
now be rewritten as C:J dy e—wa(y)e—ﬁh:Zexp[—wcr—,[:’h],
0

L XN X2
=f dXNf dXn-1- - f dx12 f)\o,)\N(L_XN)
0 0 0 Ot

D= de e‘“’yR(y)e‘[”h:%exq —wd—ph]. (2.12
0

XU fo o (K= X0 Fy .y (X)
iI:[:L N ML AT Aot Let {e;}7_; be the eigenvalues df. Then

N
Xex;{ﬁh; ‘ﬂ()\l) } . (26) del_ e_wLZ(L)ZES CY-N+1 (2 13)
0 = '

Let us define . .
! ! The eigenvalues are found easily to be

h
Gy, ,x-(Y)Efxi,x-(y)eXP{ ﬁ?[w()\iH' p(ND]p. (27 1
J ‘ ay=5[A+C+(s=2)D+ VAT,

Then

L X2
:f dXN"'f dx; {Grgap(L—Xn)
0 0 Xt

a2=%[A+C+(S—2)D—\/K],

X Gy (XN XN=1) Gy, (X2 = X1) Gy | 2 (X} az=---=a;=C-D, (2.14
(2.8 where
'II;hls multlple integral has the form of a Laplace convolution. A=[A—C—(s—2)D]?+4(s—1)B2 (2.19
enoting
% Reversing the Laplace transform in E§.13 yields
Ty, ,xj(w)EJO dy eiwnyi,xj(y), (2.9
a+ic
we have 27Tlf dweXF[wL-i—(N—l—l)lnaj(w)]. (216)
deL e “LZ(L) In the thermodynamic limit, the integral can be evaluated
exactlyby steepest descent. Let us introduce the notation
= 2 T L
g Ags--es AN Mo hw yj(w)Ewm-Hnaj(w). 2.1
KTy (@) T (@) Ty (o)

Then the maximum of the exponents in Eg.16 is ob-
=Tr(TN"H). (210 tained from the condition
The matrix TM'M(“’) now plays the role of an effective dv;

transfer matrix for this problem. It is asix s matrix of the Jo =0, (2.19
form 0=0;



55
which defines the quantity; at which y;(w) is maximal.
From the usual theory of steepest des¢éhtwe now obtain
from Eq.(2.16 that

S

z=j§=)1 Kijexd (N+1) yj(w))], (2.19
where
= ! " _ dz)/](w)
Kj_[Zw(N+1)7]r(wj)]1/2v Y(w)=—3—>—
(2.20

The sum in Eq(2.19 is dominated byy;. To see this,
note first that sincA>0, we havea;> «,. Furthermore,

al—a3=%[A—C+SD+ VA]. (2.21)
SinceA=Ce*" andh>0, we have tha—C>0. There-
fore, a;—a3>0. Hence, for any given, a;(w)>aj(w)
for j=2,...s. Since yi(w)—yj(w)=In(ey/e;), we also
have that for any givem, yi(w)>1vyj(w) for j=2,...s.
Now, atwq, 4 is maximal, so that

Y1(w1)=y1(@))>yj(w;j) (2.22

for j=2,...s. Hence, forN—oo,

N g Ki
Z=K;e" 1+ 2t exg Ny (1)~ Nyj(wj)]
=2’

~ KleN71_

(2.23

Hence

li .
m -
N— oo N

INZ= ;. (2.24)

From Eq.(2.24), we can obtain the magnetizatidm,

B 1 dInzZ
M_,B(s—l)N dh
B 1 I dy1\ [dwy
T Bs-DN (m) +(a_w1 (W
wq h
1 dy1
:m(m) ' 229

where we made use of the fact that 09y, /dw,),, by defi-
nition of w;.

Although Eq.(2.24) is in principle the exact solution of
the one-dimensional Potts fluid, it is not explicit enough to

be useful. However, we are not interested in the Potts fluid
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2

Bh+ +0(€?), (2.26

L
y1=wN+InA+s m

where A,B,C,D must be evaluated to zeroth order én
From Eq.(2.12), the result for this is

A

! B—:L d L h
Eexr[—wo], = exp-o _EB ,

C= %exp[—wo—,@h], D= %exq—wd—ﬁh].

(2.27
Now
M= lim i(%) :lnLii{B—2 .
c.o Be\ ah o B oh|A(A—C+D) wp,6=0
(2.28

After some algebra, and with the use of E}.27), we end
up with

B
A—-C+D

M=1- (2.29

0q,,6=0

After some more algebra, the susceptibility is obtained
straightforwardly,

M _ [B¥A+C-D)
X~ 5n ~P(aA—c+D)? - (230

In both Eqs(2.29 and(2.30, w; is evaluated aé=0. From
Egs.(2.26 and(2.27), we have that fore=0,

w
71=;—w0—|nw, (2.3)
where p=(N+1)/L is the density. Hence, from
(dylldw)w:wlzo, we obtain
p
w1|e=o:m- (2.32

The final result is obtained from EgR.29 and(2.30 by
setting e=0, plugging in the value ofv;, and taking the
limit h—0. We have

. [p(d=0o)]] 72
— =1—1 —(efh— p ]
M—P(p)=1 hlino[l (e 1)exp_ 1= po ,
(2.33
X B p(d—0)]
E—>S(p)—2ex;{ 1= po _—1. (2.39

itself, but rather in the percolation model. This is obtained in

the limitss—1 andh—0, and in these limits all quantities
can be calculated explicitly.

To do this, we sets=1+¢ and calculate all relevant
quantities to first order only im (this turns out to be suffi-
cieny. Therefore, from Eqs2.12 and(2.17), we find after
some algebra that

If we just seth=0 in the equation folP(p), we obtain
P(p)=0, which shows that there is no transition. There is,
however, one exception, obtained @t 1/o=pcp. This is
the close-packing density in one dimension, and clearly we
must have a percolating cluster in this case. Indeed, at this
density
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—co, (2.39

-

. F{;O(Ol—tr)
lim =ex

1-po
p—pcp p

and therefore

p(d—o)
[1—(eﬁh—1)exr{m =0

P=rpcp

(2.39

for all values ofh; henceP(pcp) =1, as expected. Note that

for 0=0 (no hard corg pcp— . Equation(2.33 becomes,
in this case,

P(P): 1-lim [1—(eﬁh_1)epd]—2’
h—0

(2.37

and indeedP(p==)=1. The transition is clearer in the ex-

pression Eq(2.34) for the mean cluster size

F{P(d—a)
po

lim S(p)= lim 2ex
p—pcp p—pcp

1| ~1==, (2.38

so that indeed the mean cluster size diverges as the density

approaches the close-packing value.

Ill. THE PAIR-CONNECTEDNESS FUNCTION

Let us now consider the pair connectedness. To this end

we need to calculate the spin two-density function

N N

PP (%, uiy.m)= < 2, 2 306=X80G=Y)6, ud, > :
IE

(3.1
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- z
J dLe “t—p?(r;u,7)
0 p

(3.9

whereh,(r;\¢,\g) is defined by its Laplace transform as
f dre ""h(r;\,\g)
0

>

Txk,xk,l(V)' ) 'Txl,xo( v)

D=0 A}
:(Tk))\k’}\ol (35)
The sum over the spins yields
N
® Z
dLe*a)L_ (2) ru, — TN*kJrl
fo P (r;m,m) kgl[ (0)]u.y

xe “h(r;gu). (3.6

Inverting the Laplace transform in Eg&.5 and(3.6), we
obtain finally
a+tiow

7 " 1 atio 1
i (r,u,n)—ﬁfafimd“’ﬁ acics 07

N
xgl [TNK Y (0) ], LT,

X ew(L—r)evr

(3.7)

To simplify the algebra let us use the system’s translational-€t us introduce now a basis of eigenvectors of the matrix
invariance[one can work with Eq(3.1) and obtain transla-  T({), which will be denoted(uy|,(u|, . .. {usl}, (u;| be-
tional invariance directly, but this adds needlessly to the caling associated with the eigenvalug defined in Eq.(2.14.

culationd. We assume thag<x, denotex—y=r, and set
y=0 and\y= x. We now have, therefore, that

pPO0u;r, m)=p?(r;u,m)
N
:p< k; 5(xk—r)5x0,ﬂ5hk‘,7> , (32

wherep=(N+1)/L. From Eq.(2.8), we have that

pA(r;u,m)

X 20 {80y uBrgay(L—Xn)
Nt

XGy gy INTXN=1) -Gy Xk 17 X)
X0y, 0% T1)Gy, n (X Xk—1) -Gy \ (X1},
(3.3

where the functiorG, Aj(x) is defined in Eq(2.7). This is
again a Laplace convolution and we have

These can be calculated straightforwardly. Furthermore, the
resulting expressions can be simplified by setting the mag-
netic fieldh=0, since it plays no part in the calculation of
the pair connectedness. With this, we have thatC and
B=D. From Egs.(2.12 and(2.14), we now have that

a;=A+(s—1)B, a,=A—B,

1 1
A(0)= Zexp(—zo), B()= Zexp(—g“d). (3.9
The eigenvectors are now found to be
1
(uq]= ﬁ(l,l,l oD, (3.9

(s—1,-1-1,... 1),

1
(Up|= —rs_ 1
1

<U3| = \/E

(0,1-1,0,...,0,

(ug|= 0,11 ...,—(s—2)).

1
V(s—1)(s—2)
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Finally, we define two vectors of the type and for anyn=3,
(0,0,...,1,0,...,0), denoted | and (7| such that their _
single nonzero component 1 stands at the posijioand (0 if n<\
7, respectively. With this, we have that —(n—2)
s — if n=A\
[T 0], = 3 Calumaly™ )l ), (al) =9 Nn=2)n =) 319
m=1
1
s — if n>\.
l(n— 1)
[Tk(V)]n,,u:nZl <77|un>aﬁ(V)<un|M>- (3.10 . (n=2)(n=1)
H We are interested, however, in the pair connectedness, which
ence | involves the differences®(r; u, ) — p@(r;;, 7). Substi-
i. a+|mdw[TN*"“(w)] golL—) tuting Eq.(3.15 into Eq.(3.14), we obtain therefore
27 Jasin Ho () ()
P (r:,u,,u)—p (rim,m)
1 atie= L ES N+1
= dwe® F N
2wt o B0 2 o (@Fmien) 23 2" 03, Kulu—run el
k 1 i _
S .
1 a+ice Kk
= - dwe(NH)Vm(“’)F k(w,r), an(v) (v—wq)r
m=1 27T| a—iw m, al(wl) e v, (317)
(3.11 . :
From Eq.(3.19, we see thatu|u,)—(»|u,) vanishes iden-
where tically for n=1,2. Now, forn=3, we have that
1
Fm’k(w’r):</~"|um><um|77> —r (3.12 an(v):;[e—vu_e—vd] (3.189

[am(@)]C ©

and y(w)=wL/(N+1)+Ina,(w) as in Eq.(2.17). In the

limit N,L— oo the integral can be evaluated exactly by steep-

and is independent of the value of Finally, from Eq.
(3.16, it is easily seen that for any, n#1, u+# 5, we have

est descent The calculation is identical to the one performew

in Egs.(2.16—(2.19. As in Eq. (2.24), the termy,; domi-
nates all the others, so that in the linNt—c, the result is

exactly
H 1 atie= N—k+1 L—
lim >— . do[T (0)],, """

= lim Kiexg (N+1)y(w1)]Fix(w,r).

N— o0

(3.13

From Eqg. (2.24, we have that, in the same
Z=Kexd(N+1)y;(w,)]. Therefore, combining Eq¥3.7),
(3.10, and(3.13), we finally obtain the expression
N
1
@(r;p,m)=lim pE Fi(op,r)5—

N—

a+tiow
Xf _ dv[Tk(V)],]'Me”r

a—|w»

—pE W o Z (7lun)

k=1

limit,

nzs <u”|'“>[<:““|un>_<77|un>]: 1.

(3.19
Therefore, we have that
p 21, ) —p?(r;;,m)
oo oo k
_ p i a+i an(V) e(V_“’l)r_ (32@
o s& 27 asie | @1(wy)

Finally, to obtaing™(r), we take the limis— 1. In this limit,
Eq. (3.9 yields

1
ay(wy)= w—lexd—wla], (3.21
where, from Eq(2.32,
P
wl_l—pa' (3.22

Hence, substituting the values af, and a4, we finally ob-
tain, by substituting Eq(3.20 into Eq. (1.16), that

X{un| ) anl?) ke(”““l”- (3.14 g'(r)=lim Lo ® () = p ()]
a(w1) m 2 p () = pr (s, m
In order to calculate the pair connectedness, we need the 15 1 fatie o
caseu,n#1 [see Eq(1.16)]. For this case, we see directly = E S dv—kl[l—e* v(d=o)Jkg(r=wy)r
from the definition of thgu;|, Eq. (3.9), that for anya=2, pi=1 2mi Jazie v

se o o8

(ugn)= (Ug|N)=

1
ﬁ’

(3.23

or
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ES k
1 [k 1 p(d—o)
firy=Z= — 1) kg—wi(r—ko) ___ S=Zexr{— -1, 3.2
g'(r) pgl jgo( 1)(]-)“’16 2 l-po (3.29
atie 1 _ in agreement with the previously obtained result, £434).
xf dy —elr ~ko-itd=al, (3.24
—joo 14
o IV. SUMMARY

This integral is an immediate inverse Laplace transform. The

. . | have obtained the exact solution of a one-dimensional
final result is therefore

o K percolation model that includes the effects of interactions
1 [k among the particles, modeled by a hard core of diameter
g'(n=-2 > (-1, i if thei
i The particles are connected to each other if their centers are

Pk=1j=0
: closer than a distana The clustering depends on the den-
p k[r—ka'—j(d—(r)]k_l sity p of the particles. By mapping this system on a Potts
X 1-po (k—1)! fluid, one can calculate the mean cluster size, pair connect-

edness, and percolation probability of this system. As with
other one-dimensional systems, the phase transition occurs
only in some extreme circumstance, in this case, only when
the density reaches the close-packing valge= 1/o. As the
(3.29 density increases towards this critical value, the mean cluster

p(r—ko)
1-po

x@[r—kaﬂ(d—a)]exp[ -

where®(z) is the step function size increases as
o={ > 0 3.2 s—2exg” 0?4 41
@=10, z<0. (3.29 R g “.D

We can understand the meaningkadindj as follows. Given and diverges apcp. Meanwhile, the pair connectedness is
a distance >0 from the(arbitrary origin, g*(r) is a sum of  given by
contributions from sets of configurations indexed kyThe

derivation shows that in each such configuration there are .
exactlyk particles within the intervat. Since the potential g'(r)=
includes a hard core of diameter we expect a condition on

k such that >kq. This is indeed contained in the expression
O[r—ko+j(d—o)], since it implies that r>ko
+j(d—o)>ko. Next, we note that each set of configura-

tions containing particles in the interval is further divided . p(r—Kko)
into subsets indexed by. The meaning of is made clear X®[r_k‘7+1(d_")]ex%_ 1-po |
from the conditionr >ko+j(d—o)=jd+(k—j)o gener-

ated by the step function. This implies thaparticles out of (4.2)
thek are singlets, i.e., aneot connected to any other particle
in the set. Therefore, the step function shows tit) is a
sum of separate contributions from all sets of configuration
containingk particles in the interval,j of which are not
connected to any other particle in the set.

Finally, we can check the expected relation between th
mean cluster sizeS and the pair connectedness. This is
worked out most conveniently from E@3.23. From this,
we have that

coX [k

> > (—1>l(.)

k=1 j=0 J

p \*[r—ko—j(d—a)]k?
(k—1)!

|

X

1-po

These results should be particularly useful as a test of
approximation methods or numerical calculations or simula-
fions. Such methods can be checked against the exact results
and some idea thus obtained of their reliability and effective-
ness. Once a method has proved to be successful in the one-
Yimensional case, it can be applied to higher dimensions
with some hope of success.

From a more general point of view, the present results are
a confirmation of the power provided by the mapping be-

. 1 ok tween continuum percolation and the Potts fluid. Recently,
J drgt(r)==2, [ —%[1—e‘”<d“’)e<”“"l>r]k] Cinlar and Torquato have used renewal theory to investigate
0 Pk=1 (V¥ one-dimensional continuum percolation, but without interac-

tions (i.e., theo—0 limit of the present modgl[7]. There

seems to be no simple way of extending this type of direct
T (3.27) probability arguments to cover interactions as well. It ap-

pears that in order to discuss general models, which include
From Eqg.(1.19, and remembering that we have calculatedinter-particle interactions, there is at the moment no method
g'(x,y) under the assumption thgx, we now have that more powerful than the mapping with the Potts fluid.

©

V:wl

1 p[;o(d—cr)
= XQ———m

_; 1-po

1 o0
S=1+ NJ dxdyngT(x,y):l+2pf drg'(r) APPENDIX
0

(3.28 The proof of the factorization theorem is obtained by in-
duction onN. For N=1 the theorem is obvious. Let us as-
and therefore sume it is correct foN and prove it forN+1. Then
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N+1 (i) fy a0 (Xnra=X) =0 and 1 # A . Then[see Eq.
f Xi — X;
i>11'_[=O )\i,)\j(| i—Xj]) (2.3,
N N fagy s (XN 1= Xi) =R(Xn+ 1= %) =0 (A7)
:i>JH:o i 'AJ(|X‘_X"|)£IO P (e =%0) and, necessarilysee Eq.(1.1)], xy.1—X;<d. Then there
N1 N must exist somg, i<j<<N+1, such that
=1 A a0 I O =) An+1=Ak,  Angi#N; forall j<k<N+1, (A8)
i= i=
No1 i.e., j is the closest spin tay, ¢, which differs from it. In
particular,Ay;1=\; .1, SO that
=TT T O = x0T a1 = 0] N
- o (X1 X) =R(Xj 17 X). (A9)
XD (Xne 1= Xn), A1) Because of the canonical ordering,
where we used the induction assumption to obtain the second X+ 1~ X <Xj 41— X <Xn41— X <d. (A10)
equality.
Let us now consider the various possibilities for everyHence
termi.
. . R(X; +1—X;)=0. All
() fry,,n,(Xne 1= %) =1. In this case clearly, (Xj+17%;) (ALY
Therefore,
fa o Xiea =X e =X =Fy L (X 1—Xi)-
i+ A | N+1N 1 i+1:M (IAZ) 0:f)‘i+1'}‘i(xi+1_Xi)f)‘NJrl’)‘i(XN+1_Xi)f)‘j+l’)\j(Xj+1_Xj)
(i) fi, 0 (ne1—X)=0 and Ay, 1=\;. Then, from =P i =X (X X)) (A12)

Eq. (2.3, From Egs. (A2)-(A12), it follows that

f)\N+1,)\i(XN+1_Xi):Q(XN+1_Xi):Ov (A3) f)\N+1’)\i(X'\,l\lt11_Xi) makes no difference anywhere in the
product IT;= " fy  x (Xiva=X) Fi, a (Xne1— X)), It can
so that, necessarilysee Eq(1.1)], xy+1—X<o. However, therefore be dropped out of every teimHence
in the canonical orderingg; <<x; ,1<<---<Xy, SO that N-1
XN+1_XN<XN+1_Xi<O'<d. (A4) I];I;I_ [f)\iJrl,)\i(Xi+1_Xi)f)\N+l,)\i(XN+l_Xi)]

Hence
XEn s Ay (XN 17 XN)

f7‘N+1~’\N(XN+1_XN)=0' (A5) N-1

= f Xi+1— X)) ]f XNt 1~ X
even if\y;1#\y, becauser<d. Therefore, |];[l U O =X I o e =)

0=f\ o Xisa =Xy (Xne1— X))
(X1 Xi). (A13)

i+10M

N
:H f,
i=1

Referring back to Eq(Al), we see that this proves the theo-
=t X=X (X Xn). (A8 oy J « P

XEn g Ay N+ 17 XN)
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